

Luis Renato Minchola Morán

Simulação Numérica da Deposição de Parafina em Dutos de Petróleo. Avaliação dos Mecanismos de Difusão Molecular e Difusão Browniana

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

Orientador: Prof. Angela Ourivio Nieckele Co-orientador: Prof. Luis Fernando Alzuguir Azevedo

> Rio de Janeiro Setembro de 2007

Luis Renato Minchola Morán

Simulação Numérica da Deposição de Parafina em Dutos de Petróleo. Avaliação dos Mecanismos de Difusão Molecular e Difusão Browniana

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Angela Ourivio Nieckele Orientador Departamento de Engenharia Mecânica – PUC-Rio

Luis Fernando Alzuguir Azevedo Co-orientador Departamento de Engenharia Mecânica – PUC-Rio

Geraldo Afonso Spinelli Martins Ribeiro

Exploração e Produção – Petrobras

Sérgio Leal Braga

Departamento de Engenharia Mecânica - PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 24 de Setembro de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Luis Renato Minchola Morán

Graduou-se em Engenharia Mecânica Universidad Nacional de Trujillo - Perú em 2000.

Ficha Catalográfica

Minchola Morán, Luis Renato

Simulação numérica da deposição de parafina em dutos de petróleo: avaliação dos mecanismos de difusão molecular e difusão browniana / Luis Renato Minchola Morán ; orientadora: Angela Ourivio Nieckele ; co-orientador: Luis Fernando Alzuguir Azevedo. – 2007.

104 f. : il. ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Setembro, 2007. Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Deposição de parafina. 3. Difusão molecular. 4. Difusão browniana. 5. Simulação numérica. I. Nieckele, Angela Ourivio. II. Azevedo, Luis Fernando Alzuguir. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

Agradecimentos

A minha orientadora, Professora Angela Ourivio Nieckele, e meu Co-orientador, professor Luis Fernando Alzuguir Azevedo, pelo apoio, e orientação durante o desenvolvimento do curso de mestrado.

A toda minha família, em especial para meu pai, mãe, irmão, e esposa pelo apoio de sempre.

Aos professores da PUC-Rio pelo ensino excelente, e pelos conhecimentos adquiridos.

Aos meus amigos e colegas de Termociências, com quem sempre compartilhei idéias, nos apoiamos nos estudos e em especial pela amizade.

Ao Departamento de Engenharia Mecânica da PUC-Rio e seus funcionários pela colaboração.

Finalmente minha gratidão à CAPES e à PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido possível.

Resumo

Minchola Morán, Luis Renato; Nieckele, Ângela Ourivio; Azevedo, Luis Fernando Alzuguir; "Simulação Numérica da Deposição de Parafina em Dutos de Petróleo. Avaliação dos Mecanismos de Difusão Molecular e Difusão Browniana" Rio de Janeiro 2007. 104p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica de Rio de Janeiro.

Deposição de parafinas é um dos mais críticos problemas operacionais no transporte de óleo cru, nos dutos que operam em ambientes frios. Portanto, uma predição acurada da deposição de parafinas é crucial para o projeto eficiente de linhas submarinas. Infelizmente, a deposição de parafinas é um processo complexo e os mecanismos de deposição ainda não são bem compreendidos. Visando identificar a importância relativa dos diferentes mecanismos de deposição, dois deles foram investigados: Difusão Molecular e Browniana. Para determinar a quantidade de depósito, as equações de conservação de massa, quantidade de movimento linear, energia, concentração da mistura e concentração da parafina fora da solução foram resolvidas numericamente pelo método de volumes finitos. Um sistema de coordenadas móveis não ortogonais que se adapta a interface do depósito da parafina foi empregado. Apesar da obtenção de uma concordância razoável do perfil de depósito, obtido com os mecanismos selecionados no regime laminar, com resultados disponíveis na literatura, uma discrepância significativa foi observada durante o transiente. O emprego do mecanismo de difusão browniana levou a uma pequena melhora na predição da solução nas regiões sub-resfriadas. A influência do regime turbulento como o mecanismo de difusão molecular também foi investigado, empregando o modelo de turbulência para baixo Reynolds $\kappa - \varepsilon$. Os resultados obtidos apresentaram coerência física, com uma taxa menor de aumento do depósito com o tempo, pois a região próxima à interface com temperatura abaixo da temperatura de aparecimento de cristais é menor no regime turbulento.

Palavras-chaves

Deposição de Parafina, Difusão Molecular, Difusão Browniana, Simulação Numérica.

Abstract

Minchola Morán, Luis Renato; Nieckele, Ângela Ourivio; Azevedo, Luis Fernando Alzuguir; "Numerical Simulation of Wax Deposition in Petroleum Lines. Assessement of Molecular Diffusion and Brownian Diffusion Mechanisms" Rio de Janeiro 2007. 104p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica de Rio de Janeiro.

Wax deposition is one of the major critical operational problems in crude oil pipelines operating in cold environments. Therefore, accurate prediction of the wax deposition is crucial for the efficient design of subsea lines. Unfortunately, wax deposition is a complex process for which the mechanisms are still not fully understood. Aiming at the identification of the relative importance of the different deposition mechanisms, two of them were investigated: Molecular and Brownian Diffusion. To determine the amount of deposit, the conservation equations of mass, momentum, energy, concentration of the mixture and wax concentration outside the solution were numerically solved with the finite volume method. A non-orthogonal moving coordinate system that adapts to the wax interface deposit geometry was employed. Although for the laminar regime, the deposition profile predicted with the selected deposition mechanisms presented a reasonable agreement with available literature results for the steady state regime, a significant discrepancy was observed during the transient. The employment of the Brownian diffusion mechanism led to only a small improvement in the transient solution prediction in sub-cooled regions. The influence of the turbulent regime with the Molecular diffusion mechanism was also investigated by employing the Low Reynolds $\kappa - \varepsilon$ turbulence model. The results obtained were physically coherent, presenting a smaller deposit thickness, since the region with temperature below the wax appearance temperature is smaller in the turbulent regime.

keywords

Wax Deposition, Molecular Diffusion, Brownian Diffusion, Numerical Simulation.

Sumário

1.	Introdução	18
	1.1. Objetivo	20
	1.2. Organização do trabalho	20
2.	Revisão Bibliográfica	21
	2.1. Características da parafina	21
	2.2. Mecanismos de deposição	21
	2.2.1. Difusão molecular	22
	2.2.2. Difusão browniana	22
	2.2.3. Dispersão por cisalhamento	23
	2.3. Modelos de deposição de parafina	24
3.	Modelagem Matemática	28
	3.1. Descrição do experimento	28
	3.1.1. Massa específica da mistura óleo Spindle/parafina	30
	3.1.2. Solubilidade da parafina	31
	3.2. Modelagem do crescimento do depósito de parafina	32
	3.2.1. Mecanismos de difusão molecular e difusão	
	browniana	32
	3.3. Equações de Conservação	34
	3.3.1. Propriedades termofísicas	37
	3.3.2. Modelagem do escoamento turbulento	38
	3.4. Geração de partículas sólidas	41
	3.4.1. Solubilidade e supersaturação	41
	3.4.2. Nucleação	43

	3.5. Formu	lação em coordenadas curvilíneas	44
	3.5.1.	Equação de conservação de massa	47
	3.5.2.	Equação de conservação da quantidade de movimento linear	48
	3.5.3.	Equação de conservação da energia	49
	3.5.4.	Equação de concentração da mistura óleo/parafina	50
	3.5.5.	Equação da concentração da parafina sólida fora da solução	50
	3.5.6.	Equação de conservação do modelo κ–ε	51
	3.6. Condiç	ções iniciais e de contorno	51
4.	Método Nu	imérico de Resolução	54
	4.1. Equaç	ão de conservação de massa	55
	4.2. Equaç	ão de conservação de uma grandeza escalar	56
	4.2.1.	Esquema de interpolação	59
	4.3. Equaça movim	ão de conservação de quantidade de ento	60
	4.4. Acopla	mento velocidade pressão	63
	4.5. Esque	ma de tratamento na interface	65
	4.6. Esque	ma de solução do sistema algébrico	65
	4.6.1.	Critério de convergência	66
	4.7. Proced	dimento da solução	66
5.	Resultados	S	68
	5.1. Modele	o de difusão molecular	69
	5.2. Modelo molecu	o do movimento browniano com a difusão ular	87

	5.3. Modelo de deposição por difusão para o regime	
	turbulento	90
6.	Conclusões, e Sugestões	99
	6.1. Conclusões	99
	6.2. Sugestões	101

7.	Referências Bibliográficas	102
----	----------------------------	-----

Lista de Figuras

Figura 2.1 –	Perfil de concentração de cristais de parafina	
	precipitados (Burger et al, 1981)	23
Figura 3.1 –	Detalhes da geometria, dimensões e materiais do	
	canal, a) na vista principal, e, b) na vista	
	transversal	29
Figura 3.2 –	Curvas da variação da massa específica da	
	mistura óleo Spindle/parafina com a temperatura	
	(°C). Traçado de uma linha de ajuste a os dados	
	experimentais obtidos por Leiroz (2004)	
		31
Figura 3.3 –	Curvas da variação da solubilidade da mistura	
	óleo/parafina, com a temperatura (°C). Traçado da	
	curva de ajuste dos dados experimentais obtidos	
	por Leiroz (2004)	31
Figura 3.4 –	Esquema do domínio computacional e dos eixos	
	coordenado	32
Figura 3.5 –	Diagrama solubilidade supersaturação	42
Figura 3.6 –	Curva da taxa de nucleação com o nível de	
	supersaturação	44
Figura 4.1 –	Esquema do volume de controle	54
Figura 4.2 –	Esquema dos componentes contravariantes e das	
	pseudo-velocidades alinhadas na face e	61
Figura 5.1 –	Espessura da deposição de parafina no regime	
	transiente para Re=366	70
Figura 5.2 –	Perfil de temperatura para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=366. (a) 1 minuto, (b) 3 minutos, (c) 5 minutos	
	e (d) regime permanente	72

Figura 5.3 –	Perfil de concentração da mistura para três	
	diferentes posições axiais no canal e para quatro	
	intervalos de tempo diferentes após iniciar o	
	resfriamento, para Re=366. (a) 1 minuto, (b) 3	
	minutos, (c) 5 minutos e (d) regime permanente	73
Figura 5.4 –	Perfil de velocidade para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=366. (a) 1 minuto, (b) 3 minutos, (c) 5 minutos	
	e (d) regime permanente	75
Figura 5.5 –	Campo de temperatura, Re=366. (a) 3 minutos, (b)	
	regime permanente	76
Figura 5.6 –	Linhas de corrente, Re=366. (a) 3 minutos, (b)	
	regime permanente	76
Figura 5.7 –	Espessura da deposição de parafinas no regime	
	transiente para Re=516	77
Figura 5.8 –	Perfil de temperatura para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=516. (a) 1 minuto, (b) 3 minutos, (c) 5 minutos	
	e (d) regime permanente	78
Figura 5.9 –	Perfil de concentração da mistura para três	
	diferentes posições axiais no canal e para quatro	
	intervalos de tempo diferentes após iniciar o	
	resfriamento, para Re=516. (a) 1 minuto, (b) 3	
	minutos, (c) 5 minutos e (d) regime permanente	79
Figura 5.10 –	Perfil de velocidade para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=516. (a) 1 minuto, (b) 3 minutos, (c) 5 minutos	
	e (d) regime permanente	80
Figura 5.11 –	Espessura da deposição de parafinas no regime	
	transiente para Re=688	81

Figura 5.12 –	Perfil de temperatura para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=688. (a) 1 minuto, (b) 3 minutos, (c) 5 minutos	
	e (d) regime permanente	81
Figura 5.13 –	Perfil de concentração da mistura para três	
	diferentes posições axiais no canal e para quatro	
	intervalos de tempo diferentes após iniciar o	
	resfriamento, para Re=688. (a) 1 minuto, (b) 3	
	minutos, (c) 5 minutos e (d) regime permanente	82
Figura 5.14 –	Perfil de velocidade para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=688. (a) 1 minuto, (b) 3 minutos, (c) 5 minutos	
	e (d) regime permanente	82
Figura 5.15 –	Espessura da deposição de parafinas no regime	
	transiente para Re=856	83
Figura 5.16 –	Perfil de temperatura para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=856. (a) 1 minuto, (b) 3 minutos, (c) 5 minutos	
	e (d) regime permanente	83
Figura 5.17 –	Perfil de concentração da mistura para três	
	diferentes posições axiais no canal e para quatro	
	intervalos de tempo diferentes após iniciar o	
	resfriamento, para Re=856. (a) 1 minuto, (b) 3	
	minutos, (c) 5 minutos e (d) regime permanente	84
Figura 5.18 –	Perfil de velocidade para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=856. (a) 1 minuto, (b) 3 minutos, (c) 5 minutos	
	e (d) regime permanente	84

Figura 5.19 –	Comparação experimental e numérica, da	
	espessura da deposição da parafina no regime	
	permanente, para diferentes Reynolds	85
Figura 5.20 –	Comparação experimental e numérica, da	
	espessura da deposição da parafina no regime	
	permanente, para diferentes Reynolds. (a) Campo	
	de velocidade imposto (Romero, 2005). (b) Campo	
	de velocidade determinado	86
Figura 5.21 –	Espessura da deposição de parafinas para o	
	mecanismo de deposição de difusão molecular e	
	para o mecanismo de difusão browniano e difusão	
	molecular, para Re=366	87
Figura 5.22 –	Perfil de concentração da parafina fora da solução	
	para três diferentes posições axiais no canal e para	
	quatro intervalos de tempo diferentes após iniciar o	
	resfriamento, para Re=856. (a) 1 minuto, (b) 3	
	minutos, (c) 5 minutos e (d) regime permanente	89
Figura 5.23 –	Espessura da deposição de parafinas para o	
	mecanismo de deposição de difusão molecular e	
	para o mecanismo de difusão browniano e difusão	
	molecular, para Re=366. Com o coeficiente de	
	difusão browniano aumentado	90
Figura 5.24 –	Espessura da deposição de parafinas para o	
	mecanismo de deposição de difusão molecular,	
	para Re=4000	91
Figura 5.25 –	Perfil de temperatura para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=4000. (a) 1 minuto, (b) 3 minutos, (c)	
	regime permanente	92
Figura 5.26 –	Perfil de concentração da mistura para três	
	diferentes posições axiais no canal e para três	
	intervalos de tempo diferentes após iniciar o	93

	resfriamento, para Re=4000. (a) 1 minuto, (b) 3	
	minutos, (c) regime permanente	
Figura 5.27 –	Perfil de velocidade para três diferentes posições	
	axiais no canal e para quatro intervalos de tempo	
	diferentes após iniciar o resfriamento, para	
	Re=4000, (a) 1 minuto, (b) 3 minutos, (c) regime	
	permanente	94
Figura 5.28 –	Perfil da energia cinética turbulenta para três	
	diferentes posições axiais no canal e para três	
	intervalos de tempo diferentes após iniciar o	
	resfriamento, para Re=4000. (a) 1 minuto, (b) 3	
	minutos, (c) regime permanente	95
Figura 5.29 –	Perfil da dissipação de energia para três diferentes	
	posições axiais no canal e para três intervalos de	
	tempo diferentes após iniciar o resfriamento, para	
	Re=4000. (a) 1 minuto, (b) 3 minutos, (c) regime	
	permanente	96
Figura 5.30 –	Campo de temperatura, Re=4000. (a) 1 minuto, (b)	
	regime permanente	97
Figura 5.31 –	Campo de linhas de corrente, Re=4000. (a) 1	
	minuto, (b) regime permanente	97
Figura 5.32 –	Campo de energia cinética turbulenta, Re=4000. (a)	
	1 minuto, (b) regime permanente	98
Figura 5.33 –	Campo de dissipação de energia cinética	
	turbulenta, Re=4000. (a) 1 minuto, (b) regime	
	permanente	98

Lista de Símbolos

a	Altura do canal retangular.
A_d	Área de deposição.
b	Longitude horizontal do canal retangular.
b_u, b_v	Termos de fonte na equações de conservação de quantidade de
	movimento linear nas direções x e y, respectivamente.
c_p	Calor específico a pressão constante.
$c_{\mu}, c_{1\varepsilon}, c_{2\varepsilon}$	Constantes empíricas utilizadas no modelo de turbulência.
D_m	Coeficiente de difusão da mistura óleo/parafina.
D_b	Coeficiente de difusão browniano.
d_p	Diâmetro das partículas de parafina geradas.
$ec{e}_{\xi}$, $ec{e}_{\eta}$	Vetores unitários tangentes à curva de ξ e η .
f_{μ}, f_1, f_2	Funções de amortecimento do modelo de turbulência.
h_{ξ}, h_{η}	Métricas referentes às direções ξ e η , respectivamente.
Ja	Jacobiano da transformação de coordenadas.
k	Condutividade térmica.
K_B	Constante de Boltzmann .
'n	Fluxo mássico da mistura óleo Spindle/parafina.
<i>m</i> _p	Fluxo mássico da parafina depositada.
$\vec{n}_{\xi}, \vec{n}_{\eta}$	Vetores unitários normal à curva de ξ e η constates.
$\dot{N}_{_N}$	Taxa cinética de nucleação.
p'	Correção de pressão.
P_{κ}	Termo de produção da energia cinética turbulenta.
Pr	Número de Prandtl.
Re	Número de Reynolds.
R_p	Termo de geração de partículas na equação de conservação das
	partículas sólidas fora da solução.
Sc	Número de Smith para a mistura.

\mathbf{Sc}_p	Número de Smith para a partícula sólida de parafina fora da	
	solução.	
t	Tempo.	
Т	Temperatura.	
u_g , v_g	Componentes cartesianos da velocidade da malha nas direções $x e y$	
	respectivamente	
<i>u, v, w</i>	Componentes cartesianos da velocidade absoluta nas direções x, y,	
	z, respectivamente	
<i>U, V</i>	Componentes contravariantes da velocidade relativa nas direções	
	normais a x e y respectivamente.	
$ ilde{U}$, $ ilde{V}$	Componentes contravariantes da velocidade relativa nas direções	
	normais ξ e η respectivamente	
ū	Vetor velocidade	
x , y	Coordenadas cartesianas horizontal e vertical respectivamente	
\checkmark	Volume.	

Abreviaturas

SC	Superfície de controle.
VC	Volume de controle.
TDMA	Algoritmo matricial tridiagonal.

Símbolos gregos

α	Difusividade térmica
α_{ξ} e α_{η}	Área principal na direção normal a $\xi \in \eta$, respectivamente.
eta_{ξ} , eta_{η}	Áreas normais aos fluxos de calor secundários, tangentes a ξ e η ,
	respectivamente.
ε	Taxa de dissipação viscosa da energia cinética turbulenta.
ϕ^{*}	Porosidade
ϕ	Variável dependente na equação geral discretizada
Φ	Quantidade física aleatória.
ξ,η	Coordenadas no plano transformado.
К	Energia cinética turbulenta.

μ	Viscosidade dinâmica.	
$\sigma_{_{\!\scriptscriptstyle \kappa}}$; $\sigma_{_{\!\scriptscriptstyle arepsilon}}$	Constantes empíricas empregadas no modelo de turbulência.	
δ	Espessura do depósito de parafina.	
Г	Coeficiente de difusão térmica.	
ρ	Massa específica.	
ω_m	Fração em massa da mistura óleo/parafina	
ω_p	Fração em volume da parafina sólida fora da solução.	
<i>W</i> _{sol}	Fração da parafina saturada na interface.	
${ au}_{ij}$	Tensor de Reynolds	
τ	Tempo transformado	

Subscritos

e, ee, e, ne, s, se, w	Faces dos volumes de controle
int	Interface
in	entrada do canal
m	Mistura
p	Partículas de parafina fora da solução
S	sólido
t	turbulento
P, N, S, E, W, NE, NW, SE, SW	Pontos nodais do domínio computacional.
ξ , η	Coordenadas curvilíneas.